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Learning Objectives: 

 

From this module students may get to know about the following: 

1. The wave-like solution of Maxwell’s equations in free space away from charges. 

2.  The propagation of electromagnetic waves in nondispersive medium  and how 

the velocity of the waves depends on the  permittivity and permeability of the 

medium. 

3. The propagation of electromagnetic waves in a dispersive medium, a medium in 

which the permittivity of the medium is a function of frequency of the 

electromagnetic waves. 

4.  Electromagnetic waves being transverse, there is polarization of the 

electromagnetic waves which is expressed in terms of the direction of the electric 

field in the plane normal to the direction of propagation.  

5. The Stokes parameters in terms of which the state of polarization of the wave can 

be expressed. 

6. They come to know briefly about the importance of polarization in astronomical 

studies. 
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7.I Introduction 

The debate over the nature of light dates back to the 17th century, when Christiaan Huygens and Isaac Newton 

proposed competing theories of light: In 1630, René Descartes popularized the wave description in his treatise 

on light, showing that the behavior of light could be re-created by modeling wave-like disturbances in a 

universal medium. Beginning in 1670 and progressing over three decades, Newton developed and championed 

his corpuscular hypothesis, arguing that the perfectly straight lines of reflection demonstrated light's particle 

nature. Around the same time, Newton's contemporaries Robert Hooke and Huygens—and later  Fresnel—

mathematically refined the wave viewpoint, showing that if light traveled at different speeds in different media 

(such as water and air), refraction could be easily explained as the medium-dependent propagation of light 

waves. The resulting Huygens–Fresnel principle, subsequently supported by Thomas Young's 1803 discovery 

of double-slit interference, was the beginning of the end for the particle light camp. The final blow against 

corpuscular theory came when James Clerk Maxwell realised that he could combine four simple equations, 

which had been previously discovered, along with a slight modification to describe self-propagating waves of 

oscillating electric and magnetic fields. When the propagation speed of these electromagnetic waves was 

calculated, it turned out to be just the speed of light. It quickly became apparent that visible light, ultraviolet 

light, and infrared light were all electromagnetic waves of differing frequency. The wave theory had prevailed 

(or at least it seemed to, till the advent of quantum theory). 

 

These electromagnetic waves are produced by sources which may consist of a moving particle or a localized 

oscillating current.  For the moment however we are interested in the propagation of these waves in vacuum or 

various kinds of media, once they have been produced.  So for the time being we work in a region of space away 

from the sources.  To solve for the Maxwell equations in the presence of sources requires the introduction of the 

auxiliary quantities – the scalar and the vector potentials.  However in the source-free region Maxwell’s 

equations can be solved and the existence of wave-like solutions can be demonstrated without the need to 

introduce potentials. 

 

7.2 Solution of Maxwell’s Equations 

7.2.1 Nondispersive Medium 

 

The Maxwell equations in a medium are 

 

   /.  D


,  tDJH  /0


    (1) 

  0





t

B
E




, 0.  B


     (2) 

 

Here ),( txE


 and ),( txB


 are the electric field and magnetic induction respectively at the point x


 at time t. 

D


and H


 are the auxiliary fields which are introduced to take the effect of the medium into account – they are 

http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
http://en.wikipedia.org/wiki/The_World_(Descartes)
http://en.wikipedia.org/wiki/The_World_(Descartes)
http://en.wikipedia.org/wiki/Opticks
http://en.wikipedia.org/wiki/Reflection_(physics)
http://en.wikipedia.org/wiki/Christiaan_Huygens
http://en.wikipedia.org/wiki/Refraction
http://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle
http://en.wikipedia.org/wiki/Thomas_Young_(scientist)
http://en.wikipedia.org/wiki/Double-slit
http://en.wikipedia.org/wiki/James_Clerk_Maxwell
http://en.wikipedia.org/wiki/Maxwell%27s_equations
http://en.wikipedia.org/wiki/Speed_of_light


 

6 
 

 

Physics 

 Electromagnetic Theory 

 Electromagnetic Waves – I 

 
 

 

the macroscopic fields.  ρ and J


are respectively the charge and current densities at ( x


,t).  These equations have 

to be supplemented by material equations which express the derived quantities, D


 and H


 in terms of the 

primary fields E


 and B


.  For a continuous and homogenous medium these relations take the form 

 

  HBED


  , .     (3) 

 

The constants ε and μ are called the permitivity and the permiability of the medium respectively.  In case we are 

interested in the study of electromagnetic phenomena in vacuum or where the effect of the medium can be 

ignored,   and   can be replaced by 0  and 0 , the permitivity and the permiability of vacuum, respectively. 

 

In the absence of the sources in an infinite medium the inhomogeneous term are absent and the equations 

become 

 

  0. D


   tDH  /


   (4)   

    

   0.  B


   0





t

B
E




,  (5)  

 

 

Further on using the auxiliary relation, they can be recast in the form 

 

  0.  E


       (6)    

  0





t

B
E




      (7) 

   

  0.  B


       (8) 
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  0





t

E
B




       (9) 

 

To solve these equations, take the curl of the last equation (9): 

 

  0
)(

)( 





t

E
B




  

 

On using equations (7), (8) and the vector identity 

 

  BBB


2).()(   

 

we get 

 

  0
1

2

2

2

2 





t

B

v
B




.       (10) 

 

Similarly on taking the curl of the second equation (7) and using equations (6) and (9), we get 

 

  0
1

2

2

2

2 



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t

E

v
E




.       (11) 

 

In these equations  

 

   


1
v .       (12) 
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Thus both E


 and B


 satisfy the wave equation  

 

  0
1

2

2

2

2 





t

u

v
u        (13) 

 

The parameter με has the dimensions of (velocity)-2 and so v has the dimensions of velocity and represents the 

velocity of propagation of the wave.  Like any second order linear differential equation, wave equation has two 

linearly independent solutions.  The simplest of these are the well-known plane-wave solutions: 

 

  
tixkieu 


.

.        (14) 

 

ω is the frequency and k


 is the wave vector.  The frequency ω and the magnitude of the wave vector k are 

related by 

 

  
cv

k m





 ,      (15) 

 

where 0/   is the dielectric constant of the medium and 0/ m  its relative permittivity.  If we restrict 

ourselves to only one dimension for the time being, say the x-direction, the fundamental solution is the linear 

combination of the two solutions above: 

 

  
)()(

),(

vtxikvtxik

tiikxtiikx

BeAe

BeAetxu







 

      (16) 

 

If the medium is nondispersive, that is, if μ and ε are independent of the frequency, then v is not a function of k, 

then the general solution can be obtained by taking the Fourier transform of the above solution.  In fact we can 

verify by direct substitution that the general solution of the one-dimensional wave equation is 

 

  )()(),( vtxgvtxftxu  ,      (17) 
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where f and g are arbitrary functions.  The first term represent a wave traveling to the right and the second to the 

left.  The velocity of propagation is v, which is called the phase velocity of the wave. 

 

 

7.2.2 Dispersive medium 

 

If the medium is dispersive, that is, if μ and ε depend on the frequency, then v is a function of k.  The above 

discussion needs some modification.  Let us take the Fourier transform of the Maxwell’s equations before 

combining them together to obtain the wave equation.  So let  

 

  




























dexBtxB

dexEtxE

ti

ti

),(),(

),(),(





      (18) 

 

The partial derivative with time can be replaced by the factor (-iω).  From the inverse Fourier Transform 

theorem  

 

  
















dtetxBwxB

dtetxEwxE

ti

ti









),(
2

1
),(

),(
2

1
),(





      (19) 

 

Substituting equation (12) into the Maxwell’s equations (6) – (9) and equating the integrands we obtain 

 

  0.  E


        (20) 

   

  0 BiE


        (21) 
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  0.  B


        (22)  

  0 EiB


        (23) 

 

Following the same procedure as we did earlier, viz., taking the curl of second or fourth equation and making 

use of others, we now obtain 

 

  

0

0

2

2
2

2

2
2





B
v

B

E
v

E









       (24) 

 

The electric and magnetic fields are now both solutions of the Helmholtz wave equation 

 

  0
2

2
2  u

v
u


       (25) 

This equation has two linearly independent solutions: 
v

kexu xki 
   ,)( .


 .  This means k is still 

given by the same equation (15), and equation (16) gives the plane wave solution for each frequency.  Only 

when we reconstitute the solution ),( txu


 by using equation (18) that dispersion produces modifications.  The 

general solution (17) no longer holds.   

 

7.2.2.1 The Plane Wave Solution 

 

The basic plane wave (14) with k given by (15) satisfies the scalar wave equation (25).  But we are looking for a 

solution of the Maxwell equations, so that our solution must satisfy the Maxwell equations as well.  So let us 

assume that each component of the electric field E


 and magnetic induction B


 satisfies the scalar wave equation 

and write these fields in the form 
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tixnik

tixnik

eBtxB

eEtxE




















.ˆ

0

.ˆ

0

),(

),(
       (26) 

 

 

These fields as written above are complex objects.  The physical fields are of course real. We make the usual 

convention that physical fields are obtained from the real parts of the complex quantities.  The constants 
00,BE


 

and n̂  are vectors that represent the amplitude of the electric field, magnetic induction and a unit vector along 

the direction of propagation, respectively.  Since each component of E


 and B


 satisfies the scalar wave 

equation (25), substituting the above representation (26) into the wave equation (25), we obtain the condition   

 

  
2

2
22 ˆ.ˆ

v
nnk


   

 

To recover the relation between the wave vector k and frequency ω, equation (15), we must have .1ˆ.ˆ nn   (The 

possibility that n̂  is complex cannot be discounted.) 

 

With these requirements, the wave equation is satisfied.  Further the solutions must satisfy the Maxwell’s 

equations.  From the divergence equations (6) and (8), we obtain 

 

  0.ˆ 0 En


       (27) 

 

  0.ˆ 0 Bn


       (28) 

  

This means that electric and magnetic fields are both perpendicular to n̂ , the direction of propagation.  As we all 

know, such a wave in which the disturbance is normal to the direction of propagation, is called transverse wave.  

The two curl equations (7) and (9) of course must also be satisfied.  Substituting the proposed solution (26) into 

either of the curl equations leads to the further condition 
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00

ˆ EnB


  . 

 

Thus the electric and magnetic fields are mutually perpendicular as well.  If n̂  is real, the fields E


 and B


 have 

the same phase.  Since E


, B


 and n̂  are all mutually perpendicular, it is useful to introduce a set of right-

handed mutually orthogonal unit vectors )ˆ,ˆ,ˆ( 21 n  (for example, along the x-, y- and z- directions).  If  E


 is 

along 1̂  then B


 is along 2̂ , and if E


 is along 2̂  then B


 is along 1̂ .Thus we have two linearly 

independent solutions 

 

  
200100

ˆ,ˆ  EBEE 


    (29a) 

 

  
100200
ˆ',ˆ'  EBEE 


    (29b) 

 

The waves described by equations (26) and (29a) or (29b) are transverse waves propagating in the direction of 

n̂ .  The flow of energy is represented by the Poynting vector /BEHES


 .  Since the physical fields 

are real parts of the complex fields that we have introduced, they have a time dependence given by )cos( t  or 

)sin( t , and hence the energy flow across any surface varies rapidly in time with frequency ω.  What interests 

us therefore is the time averaged energy flow across any surface and this is given by 

 

  /*
2

1
BES


  

 

On using equations (16) and (17) we obtain 

 

  nES ˆ
2

1 2

0






      (30) 
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Since the energy density in the electromagnetic field is )||
1

||(
2

1 22 BEu



  , the time averaged energy 

density in the wave is  

 

  *).
1

*.(
4

1
BBEEu



  . 

 

This gives 

 

  
2

0
2

Eu


        (31) 

 

Equation (30) represents energy flow per unit area per unit time while equation (31) represents energy density 

per unit volume.  The ratio of the two, /1/ uS


 is the speed of the energy flow, as expected. 

 

7.3 Polarization [See Figures – Griffiths Figure 9.8a and b] 

 

The plane wave described by equations (26) and (29a) is a wave with its electric field vector always pointing in 

the direction 1̂ .  Such a wave is said to be linearly polarized with polarization vector 1̂ .  Similarly plane wave 

described by equations (26) and (29b) is linearly polarized with polarization vector 2̂ .  The two waves are 

linearly independent of each other.  Thus the two waves 

 

  
tixki

tixki

eEE

eEE
























.

222

.

111

ˆ

ˆ
      (32) 

 

with  
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  2,1, 


 j
k

Ek
B

j

j




     (33) 

 

can be combined to give the most general plane wave propagating in the direction of the vector nkk ˆ


 

 

  
tixkieEEtxE  


.

2211 )ˆˆ(),(      (34) 

 

The amplitudes 1E  and 2E  are complex numbers in order to allow the possibility of a phase difference between 

waves of different polarization. 

 

If the orientation of the electric vector in an electromagnetic wave changes randomly, it is said to be 

unpolarized.  Natural light is unpolarized. 

 

If 1E  and 2E  have the same phase, equation (34) still represents a linearly polarized wave but with its 

polarization vector making an angle )/(tan 12

1 EE  with 1̂  and with a magnitude 
2

2

2

1 EEE  . [See 

Figure- Griffiths 9.8c] 

 

If 1E  and 2E  have different phases, the wave given by equation (34) is, in general, elliptically polarized.  To see 

it mathematically, consider the wave to be traveling in the z-direction and let us write 1E  and 2E  in terms of 

magnitude and phase as 

 

  1

11

i
eaE  , 2

22

i
eaE       (35) 

 

Then equation (34) can be written as  

 

  
)(

22

)(

11
21 ˆˆ   


tkzitkzi

eaeaE

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Since the physical fields are the real parts of the complex quantities, 

 

  
)cos(),(

),cos(

22

11









tkzatxE

tkzaE

y

x
  

 

A little manipulation using trigonometric relations leads to  

 

 )(sin)cos(2 12

2

12

21

2

2

2

1

 


































a

E

a

E

a

E

a

E yxyx   (36) 

 

which is the equation of an ellipse.  To make the matters more clear, let us first consider the simpler case of 

circular polarization.  In this case 1E  and 2E  have the same magnitude and differ in phase by 2/ .  The wave 

given by equation (34) becomes 

 

  
tixkieiEtxE  


.

210 )ˆˆ(),(      (37) 

 

where 0E  is the common (real) amplitude of the two waves and the factor i  comes from the phase difference 

of 2/  between the two.  Specifically, let the direction of propagation of the wave be taken as the positive z-

axis, and the unit vectors 1̂  and 2̂  along the x- and y- directions respectively.  Then the actual electric field 

which is the real part of equation (25) has the components 

 

  
)sin(),(

)cos(),(

0

0

tkzEtxE

tkzEtxE

y

x














     (38) 

  

At a fixed point in space, we see that the electric field (and so of course the magnetic field) is constant in 

magnitude, but sweeps around in a circle with angular frequency  .  [See Figure 7.3 from Jackson]  For the 

upper sign in equation (37) or the second of equation (38) the rotation is counterclockwise when the observer is 

looking into the oncoming wave.  In optics this wave is called left circularly polarized.  The lower sign 
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corresponds to clockwise rotation, or right circularly polarized light.  In the terminology usually adopted in 

particle physics, the two are said to posses positive helicity and negative helicity, respectively. 

 

The two circularly polarized waves (37) can be equally well used as a set of basic fields for description of a 

general state of polarization.  For this purpose we introduce the complex orthogonal unit vectors  

 

  
2

1
ˆ  )ˆˆ( 21  i       (39) 

 

with properties 

 

  ;0ˆ.ˆ*   ;0ˆ.ˆ
3

*    ;1ˆ.ˆ*      (40) 

 

Then an alternative representation equivalent to equation (34) is 

 

  
tixkieEEtxE  

 


.)ˆˆ(),(     (41) 

 

Here E  and E  are complex amplitudes.  In general this equation represents an elliptically polarized wave.  If 

the two amplitudes, E  and E , have the same magnitudes and phases, this represents a linearly polarized 

wave.  If the amplitudes are different but the phases are same then it represents an elliptically polarized wave 

with the principle axes of the ellipse in the directions 1̂  and 2̂ .  The ratio of the semi-major to semi-minor axis 

is 
r

r





1

1
, where 




E

E
r .  If the amplitudes have a phase difference between them, say, 

ire
E

E




 ,  then we 

can easily check that the axes of the ellipse traced out by the E


 vector is rotated by an amount ( 2/ ).  [See 

Figure 7.4 from Jackson] 

 

7.3.1 Stokes Parameters 
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The state of polarization is completely determined in terms of four parameters: the two amplitudes and the 

magnitude and sign of the phase shift, 12   .  Because the phase difference is hard to measure directly, an 

alternative description in terms of Stoke’s parameters is very useful.  In terms of the electric field vector, the 

stokes parameters can be motivated by observing that for a wave propagating in the z-direction, the scalar 

products,  

 

  EEEE


.ˆ,.ˆ,.ˆ,.ˆ **

21    

 

are the amplitudes of radiation with linear polarization in the x-direction, linear polarization in the y-direction, 

positive helicity and negative helicity, respectively.  The squares of these amplitudes give a measure of the 

intensity of each type of polarization.  The phase information is obtained from the cross products.  Just as we 

have written equation (37) in terms of real amplitude and phase [equation (38)], let us write equation (41) also as 

 

  

 
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In terms of the linear polarization basis ( 21
ˆ,ˆ  ), the Stokes parameters are 
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  )cos(2)].ˆ().ˆRe[(2 1221212    aaEES


 

 

  )sin(2)].ˆ().ˆIm[(2 1221213    aaEES


 

 

The parameter 0S  measure the relative intensity of the wave.  The parameter 1S  gives the preponderance of x-

linear polarization over y-linear polarization while 2S  and 3S  give phase information.  The four stokes 
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parameters are not independent since they depend on only three quantities: a1, a2 and 12   .  They satisfy the 

relation 

 

  
2

3

2

2

2

1

2

0 SSSS   

 

We usually normalize the intensity so that the intensity of the incoming light is 1.As an example, let the 

incoming beam of light be unpolarized.  In that case 

 

  0;1 3210  SSSS . 

 

7.3.2 Polarization in Astronomy 

 

Light Polarization is an important phenomenon in astronomy. The polarization of starlight was first observed by 

the astronomers William Hiltner and John S. Hall in 1949. Subsequently, Jesse Greenstein and Leverett Davis, 

Jr. developed theories allowing the use of polarization data to trace interstellar magnetic fields.  Though the 

integrated thermal radiation of stars is not usually appreciably polarized at source, scattering by interstellar 

dust can impose polarization on starlight over long distances.  Both circular and linear polarization of light from 

the Sun has been measured. Circular polarization is mainly due to transmission and absorption effects in 

strongly magnetic regions of the Sun's surface. Linear polarization in spectral lines is usually created by 

anisotropic scattering of photons on atoms and ions. 

 

The polarization of the cosmic microwave background (CMB) is also being used to study the physics of the 

very early universe.  CMB exhibits 2 components of polarization: B-mode (divergence-free like magnetic field) 

and E-mode (curl-free gradient-only like electric field) polarization. The BICEP2 telescope located at the South 

Pole helped in the detection of B-mode polarization in the CMB. This may prove the existence of Gravitational 

Waves in our ever inflating universe but confirmation is needed. 

It has been suggested that astronomical sources of polarized light caused the chirality found in biological 

molecules on Earth. 

 

 

 

 

http://en.wikipedia.org/w/index.php?title=Leverett_Davis,_Jr.&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Leverett_Davis,_Jr.&action=edit&redlink=1
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Summary 

 

1. In this module we have first given to the student the wave-like solution of 

Maxwell’s equations in free space away from charges. 

2. We then discuss the propagation of electromagnetic waves in nondispersive 

medium and find how the velocity of the waves depends on the permittivity and 

permeability of the medium. 
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3. Next we discuss the propagation of electromagnetic waves in a dispersive 

medium.  A dispersive medium in which the permittivity of the medium depends 

on the frequency of the electromagnetic waves. 

4. Next the question of polarization of the waves is discussed.  The polarization is 

defined in terms of the direction of the electric field in the wave.  

5. The Stokes parameters, in terms of which the state of polarization of the wave can 

be expressed, are defined. 

6. Finally the importance of polarization in astronomical studies is briefly described. 

 

 


